Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Funct ; 15(7): 3848-3863, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38512162

RESUMO

To better understand the hypoglycemic potential of wheat gluten (WG), we screened dipeptidyl peptidase IV (DPP-4) inhibitory active peptides from WG hydrolysates. WG hydrolysates prepared by ginger protease were found to have the highest DPP-4 inhibitory activity among the five enzymatic hydrolysates, from which a 1-3 kDa fraction was isolated by ultrafiltration. Further characterization of the fraction with nano-HPLC-MS/MS revealed 1133 peptides. Among them, peptides with P'2 (the second position of the N-terminal) and P2 (the second position of the C-terminal) as proline residues (Pro) accounted for 12.44% and 43.69%, respectively. The peptides including Pro-Pro-Phe-Ser (PPFS), Ala-Pro-Phe-Gly-Leu (APFGL), and Pro-Pro-Phe-Trp (PPFW) exhibited the most potent DPP-4 inhibitory activity with IC50 values of 56.63, 79.45, and 199.82 µM, respectively. The high inhibitory activity of PPFS, APFGL, and PPFW could be mainly attributed to their interaction with the S2 pocket (Glu205 and Glu206) and the catalytic triad (Ser630 and His740) of DPP-4, which adopted competitive, mixed, and mixed inhibitory modes, respectively. After comparative analysis of PPFS, PPFW, and PPF, Ser was found to be more conducive to enhancing the DPP-4 inhibitory activity. Interestingly, peptides with P2 as Pro also exhibited good DPP-4 inhibitory activity. Meanwhile, DPP-4 inhibitory peptides from WG showed excellent stability, suggesting a potential application in type 2 diabetes (T2DM) therapy or in the food industry as functional components.


Assuntos
Cisteína Proteases , Diabetes Mellitus Tipo 2 , Inibidores da Dipeptidil Peptidase IV , Proteínas de Plantas , Triticum/química , Diabetes Mellitus Tipo 2/tratamento farmacológico , Espectrometria de Massas em Tandem , Hidrólise , Inibidores da Dipeptidil Peptidase IV/química , Peptídeos/química , Glutens , Digestão , Dipeptidil Peptidase 4/química
2.
J Agric Food Chem ; 72(14): 8126-8139, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38551387

RESUMO

A novel ß-primeverosidase-like enzyme, originating from the hypocotyl of soybeans, was isolated and characterized. This enzyme, with an estimated molecular weight of 44 kDa, was identified as a monomer and exhibited peak activity at 55 °C and pH 5.5. It demonstrated a specific and efficient hydrolysis of 1-octen-3-yl ß-primeveroside (1-octen-3-yl prim) and 3-octanyl ß-primeveroside (3-octanyl prim) but did not act on glucopyranosides. Mn2+ significantly enhanced its activity, while Zn2+, Cu2+, and Hg2+ exerted inhibitory effects. Kinetic analysis revealed a higher hydrolytic capacity toward 1-octen-3-yl prim. Partial amino acid sequences were determined and the N-terminal amino acid sequence was determined to be AIVAYAL ALSKRAIAAQ. The binding energy and binding free energy between the ß-primeverosidase enzyme and its substrates were observed to be higher than that of ß-glucosidase, thus validating its superior hydrolysis efficiency. Hydrogen bonds and hydrophobic interactions were the main types of interactions between ß-primeverosidase enzyme and 1-octen-3-yl prim and 3-octanyl prim, involving amino acid residues such as GLU-470, TRP-463, GLU-416, TRP-471, GLN-53, and GLN-477 (hydrogen bonds) and PHE-389, TYR-345, LEU-216, and TYR-275 (hydrophobic interactions). This study contributes to the application of a ß-primeverosidase-like enzyme in improving the release efficiency of glycosidically conjugated flavor substances.


Assuntos
Soja , Hipocótilo , Hipocótilo/metabolismo , Cinética , Glicosídeo Hidrolases/metabolismo
3.
Int J Biol Macromol ; 261(Pt 1): 129807, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38290635

RESUMO

ß-Agarase was biotinylated and immobilized onto streptavidin-conjugated magnetic nanoparticles to provide insights into the effect of immobilization sites on ß-agarase immobilization. Results showed that, compared with free enzyme, the stability of prepared immobilized ß-agarases through amino or carboxyl activation were both significantly improved. However, the amino-activated immobilized ß-agarase showed higher thermostability and catalytic efficiency than the carboxyl-activated immobilized ß-agarase. The relative activity of the former was 65.00 % after incubation at 50 °C for 1 h, which was 1.77-fold higher than that of the latter. Additionally, amino-activated immobilization increased the affinity of the enzyme to the substrate, and its maximum reaction rate (0.68 µmol/min) was superior to that of carboxyl-activated immobilization (0.53 µmol/min). The visualization results showed that the catalytic site of ß-agarase after carboxyl-activated immobilization was more susceptible to the immobilization process, and the orientation of the enzyme may also hinder substrate binding and product release. These results suggest that by pre-selecting appropriate activation sites and enzyme orientation, immobilized enzymes with higher catalytic activity and stability can be obtained, making them more suitable for the application of continuous production.


Assuntos
Biotina , Enzimas Imobilizadas , Estreptavidina , Enzimas Imobilizadas/metabolismo , Glicosídeo Hidrolases/metabolismo , Estabilidade Enzimática
4.
Int J Biol Macromol ; 260(Pt 1): 129506, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38244735

RESUMO

Alginate is mainly a linear polysaccharide composed of randomly arranged ß-D-mannuronic acid and α-L-guluronic acid linked by α, ß-(1,4)-glycosidic bonds. Alginate lyases degrade alginate mainly adopting a ß-elimination mechanism, breaking the glycosidic bonds between the monomers and forming a double bond between the C4 and C5 sugar rings to produce alginate oligosaccharides consisting of 2-25 monomers, which have various physiological functions. Thus, it can be used for the continuous industrial production of alginate oligosaccharides with a specific degree of polymerization, in accordance with the requirements of green exploitation of marine resources. With the development of structural analysis, the quantity of characterized alginate lyase structures is progressively growing, leading to a concomitant improvement in understanding the catalytic mechanism. Additionally, the use of molecular modification methods including rational design, truncated expression of non-catalytic domains, and recombination of conserved domains can improve the catalytic properties of the original enzyme, enabling researchers to screen out the enzyme with the expected excellent performance with high success rate and less workload. This review presents the latest findings on the catalytic mechanism of alginate lyases and outlines the methods for molecular modifications. Moreover, it explores the connection between the degree of polymerization and the physiological functions of alginate oligosaccharides, providing a reference for enzymatic preparation development and utilization.


Assuntos
Alginatos , Polissacarídeo-Liases , Alginatos/química , Polissacarídeo-Liases/química , Oligossacarídeos/metabolismo , Polissacarídeos , Especificidade por Substrato
5.
Foods ; 13(2)2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38275697

RESUMO

Soybean whey contains high levels of off-flavors and anti-nutritional factors and is generally considered unsuitable for direct application in the food industry. In this work, to reduce beany off-flavors and anti-nutritional factors, and to improve its fermentation characteristics, soybean whey was treated with electrodialysis desalination, vacuum concentration and lactic acid bacteria (LAB) fermentation. The results showed that electrodialysis desalination increased the fermentation rate and the number of viable lactic acid bacteria of soybean whey yogurt. More than 90% of the antinutritional factor level (urease and trypsin inhibitory activity) was removed due to high-temperature denaturation inactivation and LAB degradation. Concentrated desalted soybean whey yogurt (CDSWY) possessed larger values for firmness and consistency, and a denser network microstructure compared with undesalted yogurt. Over 90% of off-flavors including hexanal, 1-octen-3-ol and 1-octen-3-one were removed after electrodialysis desalination and concentration treatment. Meanwhile, the newly generated ß-damascenone through carotenoid degradation and 2,3-butanedione improved the pleasant flavor and sensory quality of CDSWY, while the salty taste of CSWY lowered its sensory quality. This study provided a theoretical basis for better utilization of soybean whey to develop a plant-based yogurt like dairy yogurt.

6.
Int J Biol Macromol ; 255: 128010, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37979752

RESUMO

In practical applications, the gelatinisation temperature of starch is high. Most current glycogen branching enzymes (GBEs, EC 2.4.1.18) exhibit optimum activity at moderate or low temperatures and quickly lose their activity at higher temperatures, limiting the application of GBEs in starch modification. Therefore, we used the PROSS strategy combined with PDBePISA analysis of the dimer interface to further improve the heat resistance of hyperthermophilic bacteria Pyrococcus horikoshii OT3 GBE. The results showed that the melting temperature of mutant T508K increased by 3.1 °C compared to wild-type (WT), and the optimum reaction temperature increased by 10 °C for all mutants except V140I. WT almost completely lost its activity after incubation at 95 °C for 60 h, while all of the combined mutants maintained >40 % of their residual activity. Further, the content of the α-1,6 glycosidic bond of corn starch modified by H415W and V140I/H415W was approximately 2.68-fold and 1.92-fold higher than that of unmodified corn starch and corn starch modified by WT, respectively. Additionally, the glucan chains of DP < 13 were significantly increased in mutant modified corn starch. This method has potential for improving the thermal stability of GBE, which can be applied in starch branching in the food industry.


Assuntos
Enzima Ramificadora de 1,4-alfa-Glucana , Pyrococcus horikoshii , Pyrococcus horikoshii/genética , Pyrococcus horikoshii/metabolismo , Enzima Ramificadora de 1,4-alfa-Glucana/metabolismo , Pyrococcus , Amido/química , Glucanos , Estabilidade Enzimática
7.
Front Plant Sci ; 14: 1285616, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38034556

RESUMO

Introduction: Ainaxiang (Blumea balsamifera (Linn.) DC.) is cultivated for the extraction of (-)-borneol and other pharmaceutical raw materials due to its abundant volatile oil. However, there is limited knowledge regarding the structural basis and composition of volatile oil accumulation in fresh B. balsamifera leaves. Methods: To address this problem, we compare the fresh leaves' morphology, microstructure, and volatile metabonomic at different development stages, orderly defined from the recently unfolded young stage (S1) to the senescent stage (S4). Results and discussion: Distinct differences were observed in the macro-appearance and microstructure at each stage, particularly in the B. balsamifera glandular trichomes (BbGTs) distribution. This specialized structure may be responsible for the accumulation of volatile matter. 213 metabolites were identified through metabolomic analysis, which exhibited spatiotemporal accumulation patterns among different stages. Notably, (-)-borneol was enriched at S1, while 10 key odor metabolites associated with the characteristic balsamic, borneol, fresh, and camphor aromas of B. balsamifera were enriched in S1 and S2. Ultra-microstructural examination revealed the involvement of chloroplasts, mitochondria, endoplasmic reticulum, and vacuoles in the synthesizing, transporting, and storing essential oils. These findings confirm that BbGTs serve as the secretory structures in B. balsamifera, with the population and morphology of BbGTs potentially serving as biomarkers for (-)-borneol accumulation. Overall, young B. balsamifera leaves with dense BbGTs represent a rich (-)-borneol source, while mesophyll cells contribute to volatile oil accumulation. These findings reveal the essential oil accumulation characteristics in B. balsamifera, providing a foundation for further understanding.

8.
Food Res Int ; 164: 112375, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36738019

RESUMO

The aim of this study was to investigate and compare the physicochemical characteristics and volatile flavor compounds of three kinds of yoghurt made from reconstituted milk, soy drink and oat drink. The results showed that with the same fermentation ending pH of 4.5, reconstituted yoghurt had the highest titratable acidity mainly due to the highest buffering capacity and microbial counts (LAB). The textural and water holding capacity (WHC) parameters revealed that soy-based yoghurt had the highest firmness, consistency and WHC, indicating more rigid gel was formed. Meanwhile, rheological analysis showed soy-based yoghurt owned higher G' and G'' values and higher stability against external stress, demonstrating that more and stronger interactions between soy proteins were built during fermentation. The confocal laser scanning microscopy (CLSM) image witnessed that soy-based yoghurt had the densest and finest network, while oat-based yoghurt had much coarser and looser structure, which was consistent with the lowest firmness and G' value for oat-based yoghurt. In terms of color, reconstituted yoghurt was the lightest and oat-based yoghurt showed more reddish and yellowish. The main volatile flavor compounds in all yoghurts were ketones, while aldehydes contributed more in soy and oat yoghurt. PCA plot showed that volatile flavor compounds of reconstituted yoghurt and oat-based yoghurt were relatively similar, while soy-based yoghurt was much more different with high OAVs of hexanal, 1-octen-3-one, 1-octen-3-ol and 2-octenal. This study supplied a theoretical basis and an improvement direction for the better development of healthier plant-based yoghurt similar to dairy yoghurt.


Assuntos
Iogurte , Iogurte/análise , Fenômenos Químicos , Paladar
9.
Food Res Int ; 163: 112156, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36596107

RESUMO

This study focused on the interaction of walnut protein with phenolic extracts of walnut pellicle (PEWP) under alkaline condition, leading to enhancement of protein solubility under neutral condition. First, the change of PEWP under alkaline condition was determined by RP-HPLC and mass spectrometry, and the results showed that most ellagitannins in PEWP could be retained under alkaline condition within 3 h. Interaction between PEWP and walnut protein under pH-shifting condition resulted in the remarkable increase of protein solubility (above 90%) at neutral pH. The results from SDS-PAGE and SEC showed that the improved solubility lied in the formation of large and soluble protein aggregates due to the covalent interaction among walnut protein and polyphenols. A significant change in tertiary structure of protein-phenolic complex was witnessed by fluorescence spectrum and near-UV circular dichroism. Meanwhile, walnut protein-polyphenol interaction led to a slight increase in ß-turn while a slight decrease in ß-sheet. Combined with amino acid composition, it could be illustrated that the covalent bonding for walnut protein with polyphenol mainly occurred at Lysine residues.


Assuntos
Juglans , Juglans/química , Solubilidade , Nozes/química , Fenóis/análise , Polifenóis/análise , Concentração de Íons de Hidrogênio
10.
Food Res Int ; 163: 112261, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36596172

RESUMO

Recently, more and more attention has been paid to the effects of fungal contamination and fungal enzymes secreted in raw grain on product quality. As the starting material of protein and active components, the quality of low denatured defatted soybean meals (LDSM) directly determines the qualities of subsequent products. In previous studies, we have revealed that infection with Aspergillus ochraceus protease causes significant hydrolysis of proteins. In this study, growing of fungi on the stored low denatured defatted soybean meals (LDSM) was analyzed by high-throughput sequencing and real-time PCR, which revealed that the abundance of Aspergillus increased significantly after storage. Twenty fungal proteases and 9 fungal glucosidases were found in stored LDSM and zymography showed that the proteases were of serine-type with some cysteine and aspartic activities. Proteolysis of the soybean storage proteins mainly occurred after the hydration of LDSM and the average molecular weight of soy proteins decreased from 57.9 kDa to 30.7 kDa after 60 min's of hydrolysis. Two-dimensional electrophoresis (2-DE) analysis found the polypeptide fragments from soybean 7S and 11S proteins with molecular weight around 10-25 kDa in the hydrated LDSM. Glycosylated isoflavones were hydrolyzed in both dry and hydrated stored LDSM which resulted in significant (p < 0.05) increase in the contents of isoflavone aglycones. This study suggested that fungi contamination be a new factor affecting the properties of LDSM derived soy protein products.


Assuntos
Isoflavonas , Isoflavonas/análise , Glicosídeos/metabolismo , Hidrólise , Farinha , Proteínas de Soja/química , Aspergillus/metabolismo , Peptídeo Hidrolases/metabolismo
11.
J Sci Food Agric ; 103(4): 1800-1809, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36317244

RESUMO

BACKGROUND: Acid and thermal stabilities are important properties for the preparation of acidic protein beverage. It is an important method for enzymatic modification to improve the functional properties of protein. Irpex lacteus protease showed a selective hydrolysis to soy proteins. The purpose of this study was to investigate the mechanism of enzymatic hydrolysis and its effects on acid and thermal stabilities of soy proteins. RESULTS: The I. lacteus protease selectively hydrolyzed the α and α' subunits of the native soybean ß-conglycinin (7S globulin) to produce products that presented as the 55 kDa band upon sodium dodecyl sulfate polyacrylamide gel electrophoresis. The amino acid sequences of 55 kDa polypeptides were analyzed in gel multi-enzyme digestion followed by liquid chromatography-mass spectrometry. By matching the multi-enzyme digestion peptides with the published polypeptide chain sequences of the α and α' subunits, it was confirmed that the 55 kDa polypeptides were formed by eliminating amino acid residues on both sides of the N- and C-terminals. From the published protein structure database (https://www.uniprot.org/), it is known that the cleaved peptide bonds were in extension regions. Non-selective enzyme hydrolysis of both ß-conglycinin (7S globulin) and glycinin (11S globulin), with corresponding drastic increases in the degree of hydrolysis, was observed when the substrates were preheated to the denaturation degree of 40% and above. However, 55 kDa hydrolyzed products and B polypeptides showed some extent of resistance to the proteolysis by I. lacteus protease even if denaturation degree was 100%. Both selective and non-selective hydrolysis of soy proteins by I. lacteus protease improved the acid and heat stabilities under the same hydrolysis conditions (enzyme/substrate ratio, time, and temperature). CONCLUSION: Enzymatic hydrolysis of soybean proteins by the I. lacteus protease can effectively improve the acid and thermal stabilities of proteins. This discovery is significant to avoid aggregation during processing in the beverage industry. In the near future, the protease has potential application value for modification of other proteins. © 2022 Society of Chemical Industry.


Assuntos
Globulinas , Proteínas de Soja , Proteínas de Soja/química , Peptídeo Hidrolases/metabolismo , Farinha , Antígenos de Plantas/metabolismo , Proteínas de Armazenamento de Sementes/metabolismo , Peptídeos/química , Endopeptidases/metabolismo , Globulinas/química
12.
Int J Food Microbiol ; 386: 110021, 2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36462348

RESUMO

An increase in the number of antibiotic resistance genes burdens the environment and affects human health. Additionally, people have developed a cautious attitude toward chemical preservatives. This attitude has promoted the search for new natural antimicrobial substances. Oligosaccharides from various sources have been studied for their antimicrobial and prebiotic effects. Antimicrobial oligosaccharides have several advantages such as being produced from renewable resources and showing antimicrobial properties similar to those of chemical preservatives. Their excellent broad-spectrum antibacterial properties are primarily because of various synergistic effects, including destruction of pathogen cell wall. Additionally, the adhesion of harmful microorganisms and the role of harmful factors may be reduced by oligosaccharides. Some natural oligosaccharides were also shown to stimulate the growth probiotic organisms. Therefore, antimicrobial oligosaccharides have the potential to meet food processing industry requirements in the future. The latest progress in research on the antimicrobial activity of different oligosaccharides is demonstrated in this review. The possible mechanism of action of these antimicrobial oligosaccharides is summarized with respect to their direct and indirect effects. Finally, the extended applications of oligosaccharides from the food source industry to food processing are discussed.


Assuntos
Anti-Infecciosos , Indústria de Processamento de Alimentos , Humanos , Anti-Infecciosos/farmacologia , Anti-Infecciosos/metabolismo , Antibacterianos/farmacologia , Indústria Alimentícia , Oligossacarídeos/metabolismo
13.
Sensors (Basel) ; 22(24)2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36560024

RESUMO

An MHD vibration sensor, as a new type of sensor used for vibration measurements, meets the technical requirements for the low-noisy measurement of acceleration, velocity, and micro-vibration in spacecraft during their development, launch, and orbit operations. A linear vibration sensor with a runway type based on MHD was independently developed by a laboratory. In a practical test, its output signal was mixed with a large amount of noise, in which the continuous narrowband interference was particularly prominent, resulting in the inability to efficiently carry out the real-time detection of micro-vibration. Considering the high interference of narrowband noise in linear vibration signals, a single-channel blind signal separation method based on SSA and FastICA is proposed in this study, which provides a new strategy for linear vibration signals. Firstly, the singular spectrum of the linear vibration signal with noise was analyzed to suppress the narrowband interference in the collected signal. Then, a FastICA algorithm was used to separate the independent signal source. The experimental results show that the proposed method can effectively separate the useful linear vibration signals from the collected signals with low SNR, which is suitable for the separation of the MHD linear vibration sensor and other vibration measurement sensors. Compared with EEMD, VMD, and wavelet threshold denoising, the SNR of the separated signal is increased by 10 times on average. Through the verification of the actual acquisition of the linear vibration signal, this method has a good denoising effect.

14.
Crit Rev Food Sci Nutr ; : 1-17, 2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36547517

RESUMO

Oligosaccharides derived from agar, that is, agarooligosaccharides and neoagarooligosaccharides, have demonstrated various kinds of bioactivities which have been utilized in a variety of fields. Enzymatic hydrolysis is a feasible approach that principally allows for obtaining specific agar oligosaccharides in a sustainable way at an industrial scale. This review summarizes recent technologies employed to improve the properties of agarase. Additionally, the relationship between the degree of polymerization, bioactivities, and potential applications of agar-derived oligosaccharides for pharmaceutical, food, cosmetic, and agricultural industries are discussed. Engineered agarase exhibited general improvement of enzymatic performance, which is mostly achieved by truncation. Rational and semi-rational design assisted by computational methods present the latest strategy for agarase improvement with greatest potential to satisfy future industrial needs. Agarase immobilized on magnetic Fe3O4 nanoparticles via covalent bond formation showed characteristics well suited for industry. Additionally, albeit with the relationship between the degree of polymerization and versatile bioactivities like anti-oxidants, anti-inflammatory, anti-microbial agents, prebiotics and in skin care of agar-derived oligosaccharides are discussed here, further researches are still needed to unravel the complicated relationship between bioactivity and structure of the different oligosaccharides.

15.
Sensors (Basel) ; 22(23)2022 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-36501905

RESUMO

In this paper, the influence of the contact resistance between the conductive fluid and the metal electrode on the output characteristics of the magnetic fluid micro-angular vibration sensor (MHD sensor) is theoretically analyzed. The contact resistance models based on the solid-solid electric contact theory are established based on the resistivity, temperature, pressure and angular vibration of the materials between the conductive fluid and the metal electrode. The contact resistance was tested by setting up an experimental platform and making conductive fluid rings with electrode materials of Ag, Cu and Ti. The results show that the static contact resistance between the conductive fluid and the metal electrode is positively correlated with the material resistivity and temperature, and negatively correlated with the surface roughness and contact pressure of the metal electrode. The dynamic contact resistance fluctuation is proportional to the amplitude of the input voltage of the angle shaker and inversely proportional to the square of the input frequency. At the same time, reducing contact resistance can improve the MHD sensor's performance.

16.
Foods ; 11(23)2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36496592

RESUMO

In this work, pea albumins (PAs) were efficiently recovered by complexation with dextran sulfate (DS), and the emulsifying ability and stability of PA/DS complexes were studied. The largest amounts of PAs (81.25%) were recovered at r = 5:1 and pHmax (pH 3.41) by forming insoluble complexes; and only soluble complexes were formed at r = 2:1 and over the whole pH range (2.0-7.0). The emulsions stabilized by PA/DS soluble complexes remained stable under acidic conditions due to the highly negatively charge (from -45.10 ± 0.40 to -57.23 ± 0.66 mV) and small particle size (0.168 ± 0.010-0.448 ± 0.004 µm), while emulsions stabilized by PAs alone generated a strong creaming and serum separation at pH 5 and 6. In terms of emulsifying stability, all PA emulsions and unheated PA/DS emulsions became unstable with different creaming index after 14 days storage. SDS-PAGE results showed that the interface adsorption proteins of unheated emulsions mainly consisted of PA1a, which was unfavorable to the stability of the interface. On the contrary, heat treatment (95 °C, 30 min) and complexation (PA/DS = 2:1) enhanced the adsorption of PA2 and lectin at the interface, inhibiting the aggregation of PA2 and lectin. This resulted in long-term stability of the PA/DS emulsions under acidic conditions.

17.
Front Nutr ; 9: 1053469, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36438737

RESUMO

The emulsion gels that can be used as solid fat replacers were produced with different polysaccharides (κ-carrageenan, κC; high-acyl gellan, HA; konjac glucomannanon, and KGM), pea protein isolate (PPI) and sunflower seed oil. The effect of polysaccharide concentration on the texture, rheological property, microstructure, and water holding capacity of the mixed emulsion gels were investigated. Rheological results showed that the presence of polysaccharides enhanced the hardness, storage modulus and resistance against deformation of emulsion gel, where PPI/κC system exhibited superior hardness with a similar level of pig back fat, due to the self-gelation behavior of κC. CLSM and SEM results showed that the presence of κC, HA, and KGM broke the uniform structure of gel network and formed irregular, threadlike, and oval shaped inclusions respectively, resulting in the broken and coalescence of oil droplets. The α-helix content of emulsion gels decreased, while ß-sheet, ß-turn and random coils slightly increased due to the unfolding of protein during gel formation. This study may offer a valuable strategy for the development of solid fat mimetic with the characteristics closing to the pig back fat.

18.
Sci Rep ; 12(1): 18885, 2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36344579

RESUMO

To understand the physical ocean laws of ocean circulation in the deep ocean below 2000 m, a profiling float named FUXING is presented to meet the deep-ocean observation requirements at a depth of 4000 m. First, to meet the low energy consumption and buoyancy regulation stability of the profiling float, the low-power buoyancy adjustment process of FUXING is effectively solved by introducing the external seawater pressure as the driving force. Then, to reduce the energy consumption of the single profile for the profiling float, the optimization of the oil draining adjustment mode in the floating process is studied. Simultaneously, a buoyancy-driven system characterization test was performed to examine the buoyancy adjustment of FUXING. When the frequency of oil draining is 15 times, the total energy consumption of FUXING is the lowest. Finally, FUXING was deployed in the northeast off the Luzon Island to validate the feasibility and reliability. The at-sea experiments indicated that the optimized oil draining adjustment mode can reduce the total energy consumption in the floating process by more than 20%. The profile data showed that the outer sea water gradually mixes with the South China Sea water after passing through the northeast off the Luzon Island.

19.
Sensors (Basel) ; 22(19)2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36236482

RESUMO

Since the evaporation duct height (EDH) only covers the antenna height of most shipborne microwave radars, mastering the EDH in advance has great significance in achieving long-range target detection. In this paper, a set of hydrological and meteorological sensors based on the gradient meteorological instrument (GMI) were built to monitor the evaporation duct of the South China Sea (SCS). However, the monitoring needed to be interrupted during the battery replacement of the sensor, which could result in the loss of some important data collection. On the basis of the inductively coupled power transfer (ICPT) technology, the resonance principle was used to compensate the inductive reactance on the closed steel ring (CSR), and the energy stored in the super capacitor was introduced for data collection and return. A novel measuring system for the detection of an evaporation duct was proposed. To avoid iterative calculation by setting the initial value of the current evaporation duct models in large-scale and multi time evaporation duct prediction and diagnosis, on the basis of the non-iterative air-sea flux (NAF) model, the EDH was obtained by introducing the K theoretical flux observation method into the atmospheric refractive index equation. Finally, preliminary experimental results are presented for the detection of evaporation duct to demonstrate the feasibility and effectiveness of the proposed system. The communication accuracy rate of the proposed system was 99.7%. The system transmission power reached 22.8 W. The research results of the NAF model adaptability showed that the mean value of the EDH was 8.7 m, which was lower than the mean EDH of the SCS. The EDH calculated by the NAF model in the unstable air-sea stratification state was slightly lower than that calculated by the NPS model. The diagnosis of the EDH by the NAF model was similar to that of the NPS model, but the calculation stability of the NAF model was better.

20.
Food Res Int ; 161: 111912, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36192921

RESUMO

Optimal heat treatment of the soymilks is important to the production of tofu. In this study, soymilk with protein concentration of 40 mg/mL were heated at different temperatures for the fixed 50 s and were characterized by surface hydrophobicity, disulfide linked protein species determined by non-reducing SDS-PAGE and protein structural elements determined by the circular dichroism (CD). Tofu gels were prepared by acidifying the heated soymilks at 60 ℃ and 80 ℃ respectively and gelation time, gel mechanical properties as well as gel viscoelastic properties were determined by rheological analysis. The results showed that most soymilks' properties except surface hydrophobicity changed rapidly when heating temperature was higher than 80 ℃. Gelation time, storage modulus (G') at the end of acidifying and cooling processes as well as retardation time (λ) and recovery rate of tofu gels were affected by the heat treatments of soymilks. The distances between the standardized data describing heated soymilks and tofu gels respectively were calculated and compared. It was found that gelation time, G' and λ were most closely related to disulfide bond linked polymer, [CD]222 and surface hydrophobicity respectively. This study will provide useful information to the improvement of tofu processing.


Assuntos
Alimentos de Soja , Dissulfetos , Géis/química , Gluconatos , Temperatura Alta , Concentração de Íons de Hidrogênio , Lactonas/química , Polímeros , Alimentos de Soja/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...